A converse of the Hölder inequality theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hölder continuity of a parametric variational inequality

‎In this paper‎, ‎we study the Hölder continuity of solution mapping to a parametric variational inequality‎. ‎At first‎, ‎recalling a real-valued gap function of the problem‎, ‎we discuss the Lipschitz continuity of the gap function‎. ‎Then under the strong monotonicity‎, ‎we establish the Hölder continuity of the single-valued solution mapping for the problem‎. ‎Finally‎, ‎we apply these resu...

متن کامل

The Jordan-Hölder Theorem

This submission contains theories that lead to a formalization of the proof of the Jordan-Hölder theorem about composition series of finite groups. The theories formalize the notions of isomorphism classes of groups, simple groups, normal series, composition series, maximal normal subgroups. Furthermore, they provide proofs of the second isomorphism theorem for groups, the characterization theo...

متن کامل

Another View on the Hölder Inequality

Every diagonal matrix D yields an endomorphism on the n-dimensional complex vector space. If one provides the n with Hölder norms, we can compute the operator norm of D. We define homogeneous weighted spaces as a generalization of normed spaces. We generalize the Hölder norms for negative values, this leads to a proof of an extended version of the Hölder inequality. Finally, we formulate this v...

متن کامل

A Converse to Dye’s Theorem

Every non-amenable countable group induces orbit inequivalent ergodic equivalence relations on standard Borel probability spaces. Not every free, ergodic, measure preserving action of F2 on a standard Borel probability space is orbit equivalent to an action of a countable group on an inverse limit of finite spaces. There is a treeable non-hyperfinite Borel equivalence relation which is not univ...

متن کامل

Weil Converse Theorem

Hecke generalized this equivalence, showing that an integral form has an associated Dirichlet series which can be analytically continued to C and satisfies a functional equation. Conversely, Weil showed that, if a Dirichlet series satisfies certain functional equations, then it must be associated to some integral form. Our goal in this paper is to describe this work. In the first three sections...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2009

ISSN: 1331-4343

DOI: 10.7153/mia-12-03